Generalized total colorings of graphs
نویسندگان
چکیده
An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let P and Q be additive hereditary properties of graphs. A (P ,Q)-total coloring ∗Research supported in part by Slovak VEGA Grant 2/0194/10. 210 M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók of a simple graphG is a coloring of the vertices V (G) and edgesE(G) of G such that for each color i the vertices colored by i induce a subgraph of property P , the edges colored by i induce a subgraph of property Q and incident vertices and edges obtain different colors. In this paper we present some general basic results on (P ,Q)-total colorings. We determine the (P ,Q)-total chromatic number of paths and cycles and, for specific properties, of complete graphs. Moreover, we prove a compactness theorem for (P ,Q)-total colorings.
منابع مشابه
Perfect $2$-colorings of the Platonic graphs
In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and the icosahedral graph.
متن کاملVertex Distinguishing Edge- and Total-Colorings of Cartesian and other Product Graphs
This paper studies edgeand total-colorings of graphs in which (all or only adjacent) vertices are distinguished by their sets of colors. We provide bounds for the minimum number of colors needed for such colorings for the Cartesian product of graphs along with exact results for generalized hypercubes. We also present general bounds for the direct, strong and lexicographic products.
متن کاملVertex-, edge-, and total-colorings of Sierpinski-like graphs
Vertex-colorings, edge-colorings and total-colorings of the Sierpiński gasket graphs Sn, the Sierpiński graphs S(n, k), graphs S (n, k), and graphs S(n, k) are considered. In particular, χ′′(Sn), χ (S(n, k)), χ(S(n, k)), χ(S(n, k)), χ(S(n, k)), and χ(S(n, k)) are determined.
متن کاملAcyclic improper choosability of graphs
We consider improper colorings (sometimes called generalized, defective or relaxed colorings) in which every color class has a bounded degree. We propose a natural extension of improper colorings: acyclic improper choosability. We prove that subcubic graphs are acyclically (3,1)∗-choosable (i.e. they are acyclically 3-choosable with color classes of maximum degree one). Using a linear time algo...
متن کاملConstructions of universalized Sierpiński graphs based on labeling manipulations
Sierpiński graphs are known to be graphs with self-similar structures, and their various properties have been investigated until now. Besides, they are known to be isomorphic to WK-recursive networks which have been proposed as interconnection networks because of their nice extendability. As a generalization (resp., variant) of Sierpiński graphs, generalized Sierpiński graphs (resp., extended S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 31 شماره
صفحات -
تاریخ انتشار 2011