Generalized total colorings of graphs

نویسندگان

  • Mieczyslaw Borowiecki
  • Arnfried Kemnitz
  • Massimiliano Marangio
  • Peter Mihók
چکیده

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let P and Q be additive hereditary properties of graphs. A (P ,Q)-total coloring ∗Research supported in part by Slovak VEGA Grant 2/0194/10. 210 M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók of a simple graphG is a coloring of the vertices V (G) and edgesE(G) of G such that for each color i the vertices colored by i induce a subgraph of property P , the edges colored by i induce a subgraph of property Q and incident vertices and edges obtain different colors. In this paper we present some general basic results on (P ,Q)-total colorings. We determine the (P ,Q)-total chromatic number of paths and cycles and, for specific properties, of complete graphs. Moreover, we prove a compactness theorem for (P ,Q)-total colorings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect $2$-colorings of the Platonic graphs

In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and  the icosahedral graph.

متن کامل

Vertex Distinguishing Edge- and Total-Colorings of Cartesian and other Product Graphs

This paper studies edgeand total-colorings of graphs in which (all or only adjacent) vertices are distinguished by their sets of colors. We provide bounds for the minimum number of colors needed for such colorings for the Cartesian product of graphs along with exact results for generalized hypercubes. We also present general bounds for the direct, strong and lexicographic products.

متن کامل

Vertex-, edge-, and total-colorings of Sierpinski-like graphs

Vertex-colorings, edge-colorings and total-colorings of the Sierpiński gasket graphs Sn, the Sierpiński graphs S(n, k), graphs S (n, k), and graphs S(n, k) are considered. In particular, χ′′(Sn), χ (S(n, k)), χ(S(n, k)), χ(S(n, k)), χ(S(n, k)), and χ(S(n, k)) are determined.

متن کامل

Acyclic improper choosability of graphs

We consider improper colorings (sometimes called generalized, defective or relaxed colorings) in which every color class has a bounded degree. We propose a natural extension of improper colorings: acyclic improper choosability. We prove that subcubic graphs are acyclically (3,1)∗-choosable (i.e. they are acyclically 3-choosable with color classes of maximum degree one). Using a linear time algo...

متن کامل

Constructions of universalized Sierpiński graphs based on labeling manipulations

Sierpiński graphs are known to be graphs with self-similar structures, and their various properties have been investigated until now. Besides, they are known to be isomorphic to WK-recursive networks which have been proposed as interconnection networks because of their nice extendability. As a generalization (resp., variant) of Sierpiński graphs, generalized Sierpiński graphs (resp., extended S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2011